\odot	VEOLIA
---------	--------

Veolia 124 Grand Street Hoboken, New Jersey 07030 Phone: 800-422-0141

City of Hoboken 94 Washington Street Hoboken, New Jersey 07030

CONSUMER CONFIDENCE REPORT VEOLIA HOBOKEN OPERATIONS PWSID # NJ0905001 2023 ANNUAL DRINKING WATER QUALITY Report - Issued June 2024

INTRODUCTION

Providing clean, safe drinking water to you is our top priority. That's why we're pleased to present your annual Consumer Confidence Report (CCR) that details the results of the most recent water quality tests performed on your drinking water through the end of 2023. If at any time you have questions about your water quality or delivery, please call us at 800.422.5987 or visit us on the web at <u>www.mywater.veolia.us/</u>. We want you to be informed about your water supply. Council meetings are held on the third Wednesday of the month at 94 Washington Street, Hoboken New Jersey 07030. Questions can be sent to <u>water@hobokenni.gov</u>.

This system is reporting under PWSID # NJ0905001.

If you are a landlord, you must distribute this Drinking Water Quality Report to every tenant as soon as practicable, but no later than three business days after receipt. Delivery must be done by hand, mail, or email, and by posting the information in a prominent location at the entrance of each rental premises, pursuant to section #3 of NJ P.L. 2022, c.82 (C.58:12A-12.4 et seq.).

Este informe contiene información importante acerca de su agua potable. Haga que alguien lo traduzca para usted, ó hable con alguien que lo entienda. (This report contains important information about your drinking water. Have someone translate it for you, or speak with someone who understands it.)

WHERE DOES OUR WATER SUPPLY COME FROM?

The Jersey City Water System, operated by Veolia, supplies water to customers in Jersey City and Hoboken. Your water comes from the Jersey City Reservoir at Boonton and the Split Rock Reservoir in Rockaway Township. The reservoirs are located in Morris County and cover nearly 2,000 acres. The Jersey City Reservoir is 800 square acres and holds 8 billion gallons of water. The source for this water body is a 120 square mile watershed – the region draining into a river, river system, or other body of water. The Split Rock Reservoir is a 3 mile-long "reserve" reservoir that holds 3.3 billion gallons of water. Combined these two reservoirs can store 11.3 billion gallons of water. We strive to provide our customers with a safe, sure supply of water 24 hours a day, 365 days a year. EPA Safe Drinking Water Hotline: 800.426.4791. For additional information on water quality for the Jersey City water system please go to the table below that states Veolia Water Jersey City operations or visit www.mywater.veolia.us/.

SOURCE WATER ASSESSMENT PROGRAM

Under the Federal Safe Drinking Water Act, all states were required to establish a Source Water Assessment Program (SWAP). New Jersey's SWAP Plan incorporates the following four fundamental steps:

- 1. Determine the source water assessment area of each ground and surface water source of public drinking water.
- 2. Inventory the potential contamination sources within the source water assessment area.
- 3. Determine the public water system source's susceptibility to regulated contaminants. It is important to note, if a drinking water source's susceptibility is high, it does not necessarily mean the drinking water is contaminated. The rating reflects the potential for contamination of source water, not the existence of contamination.
- 4. Incorporate public education and participation.

In 2004, source water assessment reports were completed by NJDEP for all Community and Noncommunity Water Systems in New Jersey. Susceptibility ratings from the SWAP summary document can be seen below. The source water assessment reports and supporting documentation are available at http://www.state.nj.us/dep/swap/index.html or by contacting the NJDEP's Bureau of Safe Drinking Water at 609.292.5550 or <u>watersupply@dep.nj.gov</u>.

The table below illustrates the susceptibility ratings for the seven contaminant categories (and radon) for each source in the system. If a system is rated highly susceptible for a contaminant category, it does not mean a customer is or will be consuming contaminated drinking water. The rating reflects the potential for contamination of source water, not the existence of contamination. Public water systems are required to monitor for regulated contaminants and to install treatment if any contaminants are detected at frequencies and concentrations above allowable levels. As a result of the assessments, DEP may customize (change existing) monitoring schedules based on the susceptibility ratings.

Sources	Pathogens	Nutrients	Pesticides	Volatile Organic Compounds	Inorganic Contaminants	Radionuclides	Radon	Disinfection Byproduct Precursors
Jersey City (1 intake)	High	Medium	Low	Medium	Medium	Low	Low	High

ABOUT THE TREATMENT PROCESS

We strive to provide you with drinking water that meets or surpasses all federal and state standards. The Jersey City Water Treatment Plant purifies about 50 million gallons of water a day on average and can treat up to 80 million gallons a day during peak periods. Purified water moves by gravity through 23 miles of aqueduct and 300 miles of water mains. Hoboken received water from the Jersey City system through an interconnection.

TAP OR BOTTLED WATER?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA Safe Drinking Water Hotline at **800.426.4791**.

The sources of drinking water (for both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or human activity. Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of
 industrial processes and petroleum production and can also come from gas stations, urban stormwater runoff, and
 septic systems.
- Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production, and mining activities.

In order to ensure that the water is safe to drink, the EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water which must provide the same protection for public health. So, what's the bottom line? If bottled and tap water meet the federal standards, they are both safe to drink. However, your tap water is substantially less expensive than bottled water.

MONITORING YOUR WATER

We routinely monitor for contaminants in your drinking water according to EPA and NJDEP regulations. The following tables in this report show the results of our monitoring for the period of January 1 to December 31, 2023. EPA allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. NJDEP allows us to monitor for some contaminants less than once per generation of these contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data is from prior years in accordance with the Safe Drinking Water Act. The date has been noted on the sampling results table.

The information contained in this report pertaining to Per- and Polyfluoroalkyl Substances (PFAS) is based on the existing federal and state regulations and on the state of Veolia's understanding and knowledge of the available federal and state guidelines as of the time of publication.

DEFINITIONS:

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Locational Running Annual Average (LRAA): The average of four consecutive quarterly samples at a single sample site.

<u>Maximum Contaminant Level (MCL</u>): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

<u>Maximum Contaminant Level Goal (MCLG</u>): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

<u>Maximum Residual Disinfectant Level (MRDL</u>): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

<u>Maximum Residual Disinfectant Level Goal (MRDLG)</u>: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectant to control microbial contamination.

<u>Treatment Technique (TT)</u>: A required process intended to reduce the level of a contaminant in drinking water.

<u>Nephelometric Turbidity Unit (NTU</u>): A measure of the clarity of water.

Non-Detect (ND): Not detectable.

<u>Not Analyzed or Not Applicable (NA)</u>: Analysis of the constituent is not required, or no applicable regulatory standard exists.

Parts per million (ppm) or milligrams per liter (mg/L): Corresponds to one part of liquid in one million parts of liquid. **Parts per billion (ppb) or micrograms per liter (µg/L)**: Corresponds to one part of liquid in one billion parts of liquid. **Parts per trillion (ppt) or nanograms per liter (ng/L)**: Corresponds to one part of liquid in one trillion parts of liquid.

Picocuries per liter (pCi/L): Picocuries per liter is a measure of the radioactivity in water.

<u>Primary Standard</u>: Federal drinking water measurements for substances that are health-related. Water supplier must meet all primary drinking water standards.

Running Annual Average (RAA): The average of four consecutive quarterly samples.

<u>Secondary Standard</u>: Federal drinking water measurements for substances that do not have an impact on health. These reflect aesthetic qualities such as taste, odor, and appearance. Secondary standards are recommendations, not mandates.

<u>Milligrams per liter (mg/l)</u>: Corresponds to one part of liquid in one million parts of liquid (Parts per million - ppm) <u>CU</u>: Color unit.

RUL: Recommended upper limit.

<u>ND</u>: Not detectable.

<u>S.U.</u>: Standard unit.

< "less than." – often used when the contaminant is not detectable using the approved analysis method.

VEOLIA HOBOKEN OPERATIONS: PWSID # NJ0905001 2023 WATER QUALITY RESULTS - TABLE OF DETECTED CONTAMINANTS

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their healthcare providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Hoboken Data Table PWSID # NJ0905001

Inorganic Contaminants	Units	MCLG	MCL	Min	Max	MAX RAA	Year	Violation	Sources in Drinking Water
Barium	ppm	2	2	0.018	0.018	N/A	2023	no	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Disinfection By-Products	Units	MCLG	MCL	Min	Max	MAX RAA	Year	Violation	Sources in Drinking Water
Total trihalomethanes (TTHMs)	ppb	NA	80	27.7	68.9	50.3	2023	no	By-product of drinking water disinfection
Haloacetic Acids (HAA5)	ppb	NA	60	20.1	40.5	32.5	2023	no	By-product of drinking water disinfection
Disinfection	Units	MRDLG	MRDL	Min	Max	MAX RAA	Year	Violation	Sources in Drinking Water
Chlorine as Cl2	ppm	4	4	0.27	1.35	0.93	2023	no	Water additive to control microbes

Lead and Copper	Units	MCLG	AL	90th Pctl	# Sites >AL	# of Excursions	Year	Violation	Sources in Drinking Water
Lead (3)	ppb	0	15	2.64	0	0	2023	no	Lead service lines, corrosion of household plumbing including fittings and fixtures; erosion of natural deposits
Copper (2)	ppm	1.3	1.3	0.111	0	0	2023	no	Corrosion of household plumbing systems; erosion of natural deposits.
Lead and Copper Water Quality Parameters	Units	REQ UIRED	N/A	Min	Мах	# of Excursions	Year	Violation	Sources in Drinking Water
Entry Point									
рН	SU	7.0	N/A	7.14	7.42	0	2023	no	Natural property of water that may be adjusted with treatment to optimize water quality
Ortho- phosphate	mg/L as P	0.15	N/A	0.28	1.13	0	2023	no	Water additive to provide corrosion control treatment
Distribution Syst	<u>em</u>								
рН	SU	7.0	N/A	7.09	7.34	0	2023	no	Natural property of water that may be adjusted with treatment to optimize water quality
Ortho- phosphate	mg/L as P	0.15	N/A	0.88	1.04	0	2023	no	Water additive to provide corrosion control treatment

Secondary Standards - Water quality parameters related to the aesthetic quality of drinking water

Secondary standards are non-mandatory guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health.

Secondary Standards	Units	RUL	Min	Max	Year	RUL Exceeded?	Sources in Drinking Water
Alkalinity	ppm	N/A	29	78	2023	no	NA
Aluminum	ppm	0.2	ND	0.05	2023	no	Naturally occurring element
Calcium	ppm	N/A	11	22	2023		Naturally occurring element
Chloride	ppm	250	62	106	2023	no	Naturally occurring element
Color	CU	10	ND	3	2023	no	Naturally occurring organic matter
Conductivity	umhos	NA	251	472	2023		NA
Copper	ppm	1	ND	0.06	2023	no	Naturally occurring element, corrosion of household plumbing
Hardness (as CaCO3)	ppm	250	57	92	2023	no	Naturally occurring element
Iron	ppm	0.3	ND	0.17	2023	no	Naturally occurring element, leaching from metal pipes
Manganese	ppm	0.05	ND	0.05	2023	no	Naturally occurring element, leaching from metal pipes
рН	SU	6.5 - 8.5	6.97	7.70	2023	no	Natural property of water
Sodium (4)	ppm	50	32	55	2023	yes	Naturally occurring element
Total Dissolved Solids	ppm	500	127	352	2023	no	Minerals and salts dissolved in the water
Zinc	ppm	5	ND	0.06	2023	no	Naturally occurring element

VEOLIA JERSEY CITY OPERATIONS: PWSID # NJ0906001 2023 WATER QUALITY RESULTS - TABLE OF DETECTED CONTAMINANTS

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their healthcare providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Regulated Contaminants										
Inorganic Contaminants	Units	MCLG	MCL	Min	Мах	Year	Violation	Sources in Drinking Water		
Barium	ppm	2	2	0.018	0.018	2023	no	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits		
Nitrate as N	ppm	10	10	0.25	0.40	2023	no	Runoff from fertilizer usage; leaching from septic tanks, sewage; erosion of natural deposits		
Total Nitrate and Nitrite	ppm	10	10	0.25	0.40	2023	no	Runoff from fertilizer usage; leaching from septic tanks, sewage; erosion of natural deposits		

Disinfection By-Products	Units	MCLG	MCL	Min	Мах	LRAA	Year	Violation	Sources in Drinking Water
Total trihalomethanes (TTHMs)	ppb	N/A	80	27.8	87.3	58.5	2023	no	By-product of drinking water disinfection
Haloacetic Acids (HAA5)	ppb	N/A	60	19.8	63.0	37.5	2023	no	By-product of drinking water disinfection
Disinfection	Units	MRDLG	MRDL	Min	Мах	MAX RAA	Year	Violation	Sources in Drinking Water
Chlorine as Cl2	ppm	4	4	0.28	1.33	0.89	2023	no	Water additive to control microbes

Lead and Copper	Units	MCLG	AL	N/A	90th Pctl	# Sites >AL	Year	Violation	Sources in Drinking Water
Lead (4)	ppb	0	15	N/A	4.05	1	2023	no	Lead service lines, corrosion of household plumbing including fittings and fixtures; erosion of natural deposits
Copper (2)	ppm	1.3	1.3	N/A	0.129	0	2023	no	Corrosion of household plumbing systems; erosion of natural deposits.

Lead and Copper Water Quality Parameters	Units	REQUIRED	N/A	MIN	МАХ	# of Excur- sion	Year	Violation	Sources in Drinking Water
Treatment Plant									
рН	SU	7.0	N/A	7.0	7.7	0	2023	no	Natural property of water that may be adjusted with treatment to optimize water quality
Orthophosphate	mg/L as Total P	0.2	N/A	0.01	1.2	1	2023	no	Water additive to provide corrosion control treatment
Distribution System			-	-			_		
рН	SU	7.0	N/A	7.1	7.5	0	2023	no	Natural property of water that may be adjusted with treatment to optimize water quality
Orthophosphate	mg/L as Total P	0.1	N/A	0.9	1.1	0	2023	no	Water additive to provide corrosion control treatment

Surface Water/GWUDI Systems	Units	MCLG	MCL	Min	Max	% > 0.3	Year	Violation	Sources in Drinking Water
Turbidity (1)	NTU	NA	5%>0.3	0.06	0.22	0.0%	2023	no	Soil runoff

Unregulated Contaminants										
UCMR5- PFAS (5)	Units	Min	Мах	Avg	Year					
PFHxA	ppt	3.1	3.5	3.3	2023					
PFHxS	ppt	4.9	4.9	4.9	2023					
PFOA	ppt	6.9	7.6	7.3	2023					
PFOS	ppt	6.2	6.7	6.5	2023					
PFPeA	ppt	3.6	4.0	3.8	2023					

UCMR4- Additional Contaminants	Units	Min	Мах	Year
HAA5	ppb	15.4	42.1	2020
HAA6Br	ppb	6.5	12.3	2020
HAA9	ppb	22.4	50.8	2020
Manganese	ppb	0.58	2.17	2020

Unregulated PFAS Contaminants	Units	Min	Мах	Year
РҒНрА	ppt	1.9	2.4	2023
PFHxS	ppt	4.3	5.0	2023
PFHxA	ppt	2.0	4.7	2023

Regulated PFAS Contaminants	Units	MCL	Min	Max	MAX RAA	Year	Violation	Sources in Drinking Water
								Discharge from industrial,
PFOA	ppt	14	4.0	6.1	5.7	2023	no	chemical factories, release of
								aqueous film forming foam
								Discharge from industrial,
PFOS	ppt	13	6.0	7.7	7.1	2023	no	chemical, and manufacturing
								factories, release of aqueous
								film forming foam

Secondary Standards- Water quality parameters related to the aesthetic quality of drinking water

Secondary standards are non-mandatory guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health.

Secondary Standards	Units	RUL	Min	Max	Year	RUL Exceeded?	Sources in Drinking Water
Alkalinity	ppm	N/A	29	78	2023	no	NA
Aluminum	ppm	0.2	ND	0.05	2023	no	Naturally occurring element
Calcium	ppm	N/A	11	22	2023	no	Naturally occurring element
Chloride	ppm	250	62	106	2023	no	Naturally occurring element
Color	CU	10	ND	3	2023	no	Naturally occurring organic matter
Conductivity	umhos	N/A	251	472	2023	no	NA
Copper	ppm	1	ND	0.06	2023	no	Naturally occurring element, corrosion of household plumbing
Hardness (as CaCO3)	ppm	250	57	92	2023	no	Naturally occurring element
Iron	ppm	0.3	ND	0.06	2023	no	Naturally occurring element, leaching from metal pipes
рН	SU	6.5 - 8.5	6.97	7.70	2023	no	Natural property of water
Sodium (4)	ppm	50	32	55	2023	Yes	Naturally occurring element
Sulfate	ppm	250	10	10	2023	no	Naturally occurring element
Total Dissolved Solids	ppm	500	127	352	2023	no	Minerals and salts dissolved in the water
Zinc	ppm	5	ND	0.06	2023	no	Naturally occurring element

Utility Name:NJ0238001-Veolia Water New Jersey Hackensack - 2023 Data

WATER QUALITY RESULTS - TABLE OF DETECTED CONTAMINANTS

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the *Safe Drinking Water Hotline* (800-426-4791).

Veolia Water New Jersey Hackensack (PWSID # NJ0238001) – Primary Standards

				<u>aius</u>				
Turbidity	Violation Yes/No	Range	Highest Level Detected	Regulatory Limit	MCLG	Report Year	Units	Likely Source of Contamination
Turbidity ¹	No	0.01 - 0.20	Highest Level Detected: 0.20 99.5% of samples <0.3 NTU	TT≤1.0 NTU 95% of samples <0.3NTU	N/A	2023	NTU	Soil Runoff
TOC Removal Ratio	Violation Yes/No	Range of Ratio	Lowest Ratio RAA	MCL	MCLG	Report Year	Units	Likely Source of Contamination
TOC Removal Ratio	No	1.00 - 1.37	1.12	N/A	N/A	2023	N/A	Natural property of water
Inorganic Contaminants	Violation Yes/No	Highest Level Detected	Range of Results	MCL	MCLG	Report Year	Units	Likely Source of Contamination
Barium	No	0.056	N/A	2	2	2023	ppm	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Chromium	No	0.8	N/A	100	100	2023	ppb	Discharge from steel and pulp mills; erosion of natural deposits
Nitrate as Nitrogen	No	2.3	0.02 - 2.3	10	10	2023	ppm	Runoff from fertilizer usage; leaching from septic tanks, sewage; erosion of natural deposits
Nitrite as Nitrogen	No	0.03	ND - 0.03	1	1	2023	ppm	Runoff from fertilizer usage; leaching from septic tanks, sewage; erosion of natural deposits
Lead & Copper	Violation Yes/No	Ninetieth Percentile (Range of Results)	Number of Site Above AL	AL	MCLG	Period	Units	Likely Source of Contamination
Copper ²	No	0.05 (ND-0.21)	0 of 108	1.3	1.3	2023 (Jan-Jun)	ppm	Corrosion of household plumbing systems
Copper ²	No	0.06 (ND-0.15)	0 of 106	1.3	1.3	2023 (Jul-Dec)	ppm	Corrosion of household plumbing systems
Lead ³	No	5.38 (ND-20.2)	1 of 108	15	N/A	2023 (Jan-Jun)	ppb	Corrosion of household plumbing systems
Lead ³	No	7.08 (ND-38)	4 of 106	15	N/A	2023 (Jul-Dec)	ppb	Corrosion of household plumbing systems

Utility Na	me:NJ0	238001-Veo	olia Water I	New J	ers	ey ⊦	Hack	ens	ack -	2023 Data	
Volatile Organic Compounds	Violation Yes/No	Highest Level Detected	Range of Result	ts MC	CL	MCL	.G Ri	eport ⁄ear	Units	Likely Source of Contamination	
Toluene	No	0.629	N/A	10	00	0 1000		023	ppb	Discharge from petroleum refineries	
Disinfectant Residuals	Violation Yes/No	Maximum RAA	Range of Result	Results MRDL		MRD		eport ⁄ear	Units	Likely Source of Contamination	
Chloramines	No	2.37	ND - 5.3	4.	0	4.0) 2	023	ppm	Water additive used to control microbes	
Disinfection By-Products	Violation Yes/No	Maximum LRAA	Range of Result	ts MC	Ľ	MCL	.G R(eport ⁄ear	Units	Likely Source of Contamination	
Total HAA(5) (Haloacetic Acid)	No	33.6	13.1 – 37.0	6	D	N/A	A 2	023	ppb	By-product of drinking water disinfection	
Total THM (Trihalomethanes)	No	35.9	17.4 - 51.5	8	0	N/A	N/A 20		ppb	By-product of drinking water disinfection	
Bromate	Violation Yes/No	Max RAA	Range of Result	ts MC	Ľ	L MCLG		eport ⁄ear	Units	Likely Source of Contamination	
Bromate	No	1.21	ND - 1.6	1	0	N/A		023	ppm	By-product of drinking water disinfection	
Per- and Polyfluorinated Substances (PFAs)	Violation Yes/No	Quarterly Locational Average	Range of Result	ts MC)L	MCL	.G R(eport ⁄ear	Units	Likely Source of Contamination	
Perfluorooctanesulfonic acid (PFOS)	No	3	2.01 - 4	2.01 - 4 13		N/A		023	ppt	Discharge from industrial, chemical, and manufacturing factories, release of aqueous film forming foam	
Perfluorooctanoic acid (PFOA)	No	9.2	7.17 - 10.4	14	14		A 2	2023	ppt	Discharge from industrial, chemical factories, release of aqueous film forming foam	
		Water Qua	lity Parameters -	- Lead ar	nd Co	pper l	Rule				
WQP-Interconnection CC002002	Range	e of Results	Lower Limit	Upper Limit	Re Ye	port ear	Units		Number of Excursions		
Alkalinity (as CaCO3)	3	38 - 45	N/A	N/A	20	023	ppm	pm		N/A	
Orthophosphate (as Total P)	0.85 - 1.17		0.5	N/A	20	023	ppm			0	
рН	6.96 - 7.69		7	N/A	20	023	s.u.		0		
WQP-Interconnection CC012021	Range	e of Results	Lower Limit	Upper Limit	Re Ye	eport Year Unit			Number of Excursions		
Alkalinity (as CaCO3)	3	36 - 45	N/A	N/A	20	023	ppm			N/A	
Orthophosphate (as Total P)	0.	15 - 1.1	0.5	N/A	20	2023 ppm			1		

7.02 - 7.92

pН

7

N/A

2023

s.u.

0

Utility Name:NJ0238001-Veolia Water New Jersey Hackensack - 2023 Data

WQP- Distribution System	Range of Results	Lower Limit	Upper Limit	Report Year	Units	Number of Excursions
Orthophosphate (as Total P)	0.7 - 2.62	0.5	N/A	2023	ppm	0
рН	7.12 - 8.22	7	N/A	2023	s.u.	0
WQP- Treatment Plant TP011020	Range of Results	Lower Limit	Upper Limit	Report Year	Units	Number of Excursions
Orthophosphate (as Total P)	0.73 - 0.91	0.5	N/A	2023	ppm	0
рН	7.5 - 8.22	7.2	8.5	2023	s.u.	0

In addition to the contaminants listed above, for which Federal and/or State regulations limits have been established, and regular monitoring is required, we may also occasionally test for unregulated contaminants to determine occurrence data and provide input to regulatory agencies that are considering these contaminants for future regulations. This data is presented below.

Unregulated Contaminants								
Unregulated Contaminants	Highest Level Detected	Units	Report Year					
1,4-Dioxane	0.026	ppb	2021					
Perfluorobutanesulfonic acid (PFBS)	3.22	ppt	2023					
Perfluoroheptanoic acid (PFHpA)	4	ppt	2023					
Perfluorohexanesulfonic acid (PFHxS)	2.53	ppt	2023					
Perfluorohexanoic acid (PFHxA)	6.19	ppt	2023					

Secondary standards are non-mandatory guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health.

Secondary Standards									
Secondary Standards	Highest Level Detected	RUL	Units	Report Year					
Alkalinity (as CaCO3)	114	N/A	ppm	2023					
Aluminum	0.14	0.2	ppm	2023					
Calcium	46	N/A	ppm	2023					
Chloride	138	250	ppm	2023					
Color	3	15	Color Units	2023					
Conductivity	689	N/A	umho/cm	2023					
Corrosivity	-0.07	N/A	non corrosive	2023					
Hardness	156	N/A	ppm	2023					
рН	8.22	8.5	s.u.	2023					
Sodium ⁴	75	50	ppm	2023					
Sulfate	12	250	ppm	2023					
Total Dissolved Solids	372	500	ppm	2023					
Zinc	0.58	5	ppm	2023					

Notes:

- Turbidity is a measure of the cloudiness of the water. We monitor it because it is a good indicator of the water quality. High turbidity can hinder the effectiveness of disinfectants. State regulations require that turbidity must always be below 1 NTU at the treatment system. State regulations require that turbidity must always be below 5 NTU in the distribution system and that 95% of the turbidity samples collected (at the treatment system entry point) have measurements below 0.3 NTU.
- 2. The Copper level presented represents the 90th percentile of the sites tested. A percentile is a value on a scale of 100 that indicates the percent of a distribution that is equal to or below it. The 90th percentile is equal to or greater than 90% of the copper values detected at your water system.
- 3. The Lead level presented represents the 90th percentile of the sites tested. A percentile is a value on a scale of 100 that indicates the percent of a distribution that is equal to or below it. The 90th percentile is equal to or greater than 90% of the lead values detected at your water system.
- 4. This result was above New Jersey's Recommended Upper Limit [RUL] for sodium. For healthy individuals, the sodium intake from water is not important because a much greater intake of sodium takes place from salt in the diet. However, sodium levels above the RUL may be of concern to individuals on a sodium-restricted diet. Road salt run-off affecting our source water quality is the leading cause of elevated sodium levels in the drinking water supply. We are meeting with communities within our source water area to discuss options for minimizing use of and/or alternatives to road salt.
- 5. The information contained in this report pertaining to Per- and Polyfluoroalkyl Substances (PFAS) is based on the existing federal and state regulations and on the state of Veolia's understanding and knowledge of the available federal and state guidelines as of the time of publication.

WAIVER INFORMATION

The Safe Drinking Water Act (SDWA) regulations allow monitoring waivers to reduce or eliminate the monitoring requirements for asbestos, volatile organic chemicals (VOCs), and synthetic organic chemicals (SOCs). Our system received monitoring waivers for SOCs because we are not vulnerable to this type of contamination.

Sodium and Your Drinking Water

We routinely monitor the drinking water to ensure that it meets the standards set by the United States Environmental Protection Agency (EPA) and the New Jersey Division of Environmental Protection (DEP). While the EPA does not have a maximum level for sodium in drinking water, the NJDEP has a recommended upper limit (RUL) of 50 parts per million (ppm). 2023 results showed that Hoboken exceeded the recommended upper limit for sodium. The highest running annual average is 42 ppm, with a range of results of 32 ppm to 55 ppm. According to the DEP, for healthy individuals, the sodium intake from water is not important because a much greater intake of sodium takes place from salt in the diet. However, elevated levels of sodium may be a concern for persons on a sodium-restricted diet. If you have any concerns, please consult your healthcare provider. For more information, please call 877.303.2435.

HEALTH EFFECTS OF LEAD

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Your water is lead-free when it leaves our treatment plant. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Veolia is responsible for providing high-quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking and cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at 800.426.4791 or at http://www.epa.gov/safewater/lead. To learn more about lead, please visit http://www.epa.gov/lead. If you want to have a lead sample collected from your residence please call 800.422.5987 or visit us on the web at www.mywater.veolia.us/.

However, for those served by a lead service line (LSL), flushing times may vary based on the length of the service line and plumbing configuration in your home. If your home is set back further from the street a longer flushing time may be needed. To conserve water, other household water usage activities such as showering, washing clothes, and running the dishwasher are effective methods of flushing out water from a service line.

If you want to pass on more information to your residents, please consider these:

- What's a lead service line? <u>https://www.nj.gov/dep/lead/images/lead-pipes-infographic.jpg</u>
- NJ's Lead Service Lines Video https://www.youtube.com/watch?v=3SetRPs4DCQ

IMPORTANT INFORMATION

Please pass this information along to those who speak Spanish, Portuguese, Korean, Gujarti or Arabic:

- Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alguien que lo entienda bien.
- Este reporte contem informáções importantes sobre a sua água de beber. Traduza-o ou fale com alguém que o compreenda.
- 아노바이 보고는 귀라 깨너 드시는 서류에 대한 중요한 정당가 구방되어 있는지다. - 번역을 카시는지 다니면 이 방물 받고 이해정시는 - 것과 기는 과자기는 비행지다.-
- રેતા સ્ટર્ગેલાલ મંદ તમારા પોલાવા પાક્ષ લિવે સગ્રગત્ય ન માણમારી આપલા માં આવ્યુ છે.
 ત્રો'એ ચવુલાદ કરો ન્લેસલા વેને સમજણ પડળી છે.
 તેમ તેને આવે લાત કરો
- للعلومات في هذا التقرير تحتوي على معلومات مهمة عن مياة الشرب التي تشريها. من فضلك اذا لم تقهم هذة المعلومات اطلب من يترجميا لك.

Special Considerations for Children, Nursing Mothers, Pregnant Women and Others

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their healthcare providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline **800.426.4791**.

This report contains important information about your drinking water. Have someone translate it for you, or speak with someone who understands it.